Investigation of low frequency drift in fMRI signal.

نویسندگان

  • A M Smith
  • B K Lewis
  • U E Ruttimann
  • F Q Ye
  • T M Sinnwell
  • Y Yang
  • J H Duyn
  • J A Frank
چکیده

Low frequency drift (0.0-0.015 Hz) has often been reported in time series fMRI data. This drift has often been attributed to physiological noise or subject motion, but no studies have been done to test this assumption. Time series T*2-weighted volumes were acquired on two clinical 1.5 T MRI systems using spiral and EPI readout gradients from cadavers, a normal volunteer, and nonhomogeneous and homogeneous phantoms. The data were tested for significant differences (P = 0.001) from Gaussian noise in the frequency range 0.0-0.015 Hz. The percentage of voxels that were significant in data from the cadaver, normal volunteer, nonhomogeneous and homogeneous phantoms were 13.7-49.0%, 22.1-61.9%, 46.4-68.0%, and 1.10%, respectively. Low frequency drift was more pronounced in regions with high spatial intensity gradients. Significant drifting was present in data acquired from cadavers and nonhomogeneous phantoms and all pulse sequences tested, implying that scanner instabilities and not motion or physiological noise may be the major cause of the drift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).

We investigated the biophysical mechanism of low-frequency drift in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) (0.00-0.01 Hz), by exploring its spatial distribution, dependence on imaging parameters, and relationship with task-induced brain activation. Cardiac and respiratory signals were concurrently recorded during MRI scanning and subsequently removed fr...

متن کامل

Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...

متن کامل

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 1999